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ABSTRACT

Aim: Predation on livestock is one of the primary concerns for Mexican wolf (Canis lupus baileyi) recovery
because it causes economic losses and negative attitudes toward wolves. Our objectives were to develop a spatial
risk model of cattle depredation by Mexican wolves in the USA portion of their recovery area to help reduce the
potential for future depredations.

Location: Arizona and New Mexico, USA.

Methods: We used a presence-only maximum entropy modeling approach (Maxent) to develop a risk model
based on confirmed depredation incidents on public lands. In addition to landscape and human variables, we
developed a model for annual livestock density using linear regression analysis of Animal Unit Month (AUM),
and models for abundance of elk (Cervus canadensis), mule deer (Odocoileus hemionus) and white-tailed deer
(Odocoileus virginiana) using Maxent, to include them as biotic variables in the risk model. We followed current
recommendations for controlling model complexity and other sources of bias.

Results: The primary factors associated with increased risk of depredation by Mexican wolf were higher canopy
cover variation and higher relative abundance of elk. Additional factors with increased risk but smaller effect
were gentle and open terrain, and greater distances from roads and developed areas.

Main conclusions: The risk map revealed areas with relatively high potential for cattle depredations that can
inform future expansion of Mexican wolf distribution (e.g., by avoiding hotspots) and prioritize areas for de-
predation risk mitigation including the implementation of active non-lethal methods in depredation hotspots.
We suggest that livestock be better protected in or moved from potential hotspots, especially during periods
when they are vulnerable to depredation (e.g. calving season). Our approach to create natural prey and livestock
abundance variables can facilitate the process of spatial risk modeling when limitations in availability of
abundance data are a challenge, especially in large-scale studies.

1. Introduction

methods were often more effective than lethal methods (Treves et al.,
2016; Santiago-Avila et al., 2018), however, other studies report that

Large carnivores can cause conflicts with humans by preying on
livestock, which causes economic losses and, in some cases, negative
attitudes toward carnivores (Treves and Bruskotter, 2014; Dickman
et al., 2013). A variety of non-lethal approaches to reduce human-
carnivore conflicts are available. Some studies show that non-lethal
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there is high variation, indeterminacy and lack of scientific evidences in
non-lethal methods effectiveness (Miller et al., 2016; Eklund et al.,
2017; Eeden et al., 2018). Moreover, depredation on livestock by
wolves may be a learned behavior and therefore may be difficult to stop
if all individuals in a pack are involved (Harper et al., 2005). An
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alternative approach is to prevent conflicts from occurring, which may
be more efficient and less costly than trying to reduce conflict after it
has occurred. Prevention of conflicts depends on recognizing the con-
ditions that promote these conflicts (Linnell et al., 1999). Therefore,
predicting future depredations from their past patterns can lead to
optimum interventions for reducing carnivore-livestock conflicts
(Treves and Rabenhorst, 2017). Predictive spatial models find re-
lationships between ecological variables and spatial processes and are
commonly used tools to plan strategies for wildlife management
(Guisan and Zimmermann, 2000). Risk maps, created by spatial models,
predict spatial distributions of potential conflicts between humans and
carnivores, and provide an opportunity for early warning (Edge et al.,
2011; Treves et al., 2004; Treves et al., 2011; Miller, 2015). Moreover,
identifying the role of landscape, natural prey, and livestock char-
acteristics in depredation can help inform management of livestock and
wildlife to reduce depredations (Miller et al., 2015; Treves and
Rabenhorst, 2017).

The Mexican wolf (Canis lupus baileyi) is an example of a carnivore
that is being restored to part of its native range, but which can cause
conflicts with humans. Historically, the Mexican wolf occurred in por-
tions of the American Southwest and south through central Mexico,
although there is disagreement about precise historical range limits
(Heffelfinger et al., 2017; Hendricks et al., 2016; Parsons, 1998). His-
torical efforts to eradicate Mexican wolves due to conflicts with live-
stock resulted in their extirpation from the United States by 1970
(Bednarz, 1988; Brown and Shaw, 2002). The Mexican wolf was listed
as endangered under the US Endangered Species Act in 1976 upon
which the last individuals were captured from the wild in Mexico to
initiate a captive breeding program (McBride, 1980). The first releases
of captive-bred Mexican wolves occurred in 1998 within a primary
recovery zone in the Apache National Forest in east-central Arizona.
Wolves were allowed to disperse throughout the Blue Range Wolf Re-
covery Area (BRWRA), which included additional areas of the Apache
and Gila National Forests in Arizona and west-central New Mexico (see
Fig. S1. 1 of Appendix S1 in Supporting information). The small
founding population and low gene diversity have been a concern in
Mexican wolf recovery efforts (Harding et al., 2016). In 2015, revisions
to the regulations for the nonessential experimental population of the
Mexican wolf resulted in a dramatic increase in the area where Mexican
wolves would be allowed to occupy, from the former BRWRA to the
Mexican Wolf Experimental Population Area (MWEPA), which includes
areas of Arizona and New Mexico south of Interstate Highway 40
(Appendix S1; U.S. Fish and Wildlife Services [USFWS], 2015). This
expansion will increase Mexican wolf-livestock conflicts (USFWS,
2015). From 1998 to 2017 the Mexican wolf population in the US has
generally increased from an initial 11 wolves in 3 packs to a maximum
of 114 wolves within 22 packs during 2017 (USFWS, 2017). Residents
of Arizona and New Mexico that oppose Mexican wolf restoration, do so
primarily because of concerns about livestock and human safety
(Schoenecker and Shaw, 1997). Depredation by Mexican wolves on li-
vestock occurs throughout the year on private and public lands. Prior to
2007 management removal of wolves from the population was nega-
tively impacting population growth. Protocols were altered to empha-
size non-lethal and proactive strategies and minimize removals
(USFWS, 2017).

The overarching goal of this study was to develop a model that
explains landscape scale spatial factors associated with Mexican wolf
depredation on livestock. Specific objectives included: 1) predict re-
lative density of livestock and predict relative abundance of potential
natural prey, including elk (Cervus canadensis), mule deer (Odocoileus
hemionus) and white-tailed deer (Odocoileus virginiana), in Arizona and
New Mexico with the aim of using estimates from these models as part
of the initial suite of variables that were tested for inclusion within the
risk model, 2) develop a risk model of Mexican wolf depredation on
cattle to understand factors associated with increased risk and to il-
lustrate spatial arrangement of depredation conflict hotspots, and 3)
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make recommendations for future wolf recovery and livestock man-
agement to reduce potential conflicts. Our study was important in
several ways. First, the depredation risk model provides information
about areas with high potential for conflict before the distribution of
Mexican wolf has expanded within the revised MWEPA. This provides
an opportunity to inform future management actions that can reduce
potential conflicts before they occur. Second, fine scale spatial data on
abundance of livestock and natural prey are rarely available for large
regional study areas. We developed models for livestock density and
natural prey abundance, which were tested as predictors in the risk
model. Third, few studies have applied maximum entropy modeling
(i.e., Maxent; Phillips et al., 2006) using current recommendations
(Morales et al., 2017; Yackulic et al., 2013). We incorporated all cur-
rently recommended modeling criteria, including correcting sampling
bias, defining background extent based on study goals and assumptions,
testing model complexity, and avoiding overestimation in model eva-
luation.

2. Methods
2.1. Study area

The study area was the states of Arizona and New Mexico, USA. The
risk model was developed based on depredation incidents that occurred
on public lands within and near the former BRWRA and then was ex-
trapolated as a risk map to the study area (Appendix S1).

2.2. Occurrence records

We focused our analysis on depredations on cattle by Mexican
wolves because cattle represent the majority of livestock production,
both in terms of numbers of animals and economic value, and because
the majority of depredation incidents attributed to Mexican wolves
involve cattle (USFWS, 2017). We analyzed 186 confirmed lethal de-
predation incidence locations (yearlings n = 2, heifers n = 2, calves
n = 108, bulls n = 3 and cows n = 71) verified by Wildlife Services as
part of the Interagency Field Team from 1998 to February 2017. To
reduce the effect of sampling bias, we used spatial filtering to randomly
remove all but one depredation record within each 1km? pixel. After
rarefaction, 162 depredation points remained in the dataset.

2.3. Independent variables

We modeled depredation risk as a function of 6 biotic (relative
abundance of elk, mule deer and white-tailed deer, annual livestock
density, land cover type, land cover variety, canopy cover, and cover
variety), 4 human (distance to and density of roads, distance to and
density of developed areas) and 6 landscape (elevation, slope, terrain
ruggedness index [TRI], aspect, distance to and density of water re-
sources) variables (see Appendix S2 in Supporting information for hy-
potheses, variable sources, and variable calculations).

Spatial data on the abundance of livestock was not available for the
entire study area and is probably not obtainable given the large number
of livestock operations and variation in how livestock are managed.
Consequently, we developed a spatial layer “annual livestock density”
that represents the annual capacity for livestock production as a proxy
for actual livestock abundance. We applied generalized linear models
and used AIC. to model annual livestock capacity on basis of Animal
Unit Month (AUM) data for 3876 allotments (covering 39% of the study
area) on lands managed by the US Forest Service and Bureau of Land
Management and then interpolated to the 61% remainder of our study
area (see Appendix S3 in Supporting information for details of methods
and results). Similarly, spatial data on the abundance or density of the
primary natural prey of the Mexican wolf (elk, mule deer and white-
tailed deer) were not available for the entire study area. Maxent's raw
output can be directly interpreted as a model of relative abundance
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(Phillips et al., 2017). Consequently, we used available occurrence data
for each prey species in Maxent to generate species distribution models
that estimate their relative abundance. Development of the prey re-
lative abundance models followed similar procedures as used for the
risk model (see Appendix S4 in Supporting information for details of
methods and results). The original pixel size of all variables was 30 m,
except annual AUM density, which was 1 km. All variables were scaled
to 1 km pixel size.

2.4. Modeling approach

Depredation risk models are usually developed in the same manner
as correlative species distribution models, but based on depredation
locations rather than species occurrence locations (Miller, 2015). The
decision-making framework for such modeling is dependent on the
purpose of the model and is determined by the type of survey data
available (either presence-absence or presence-background) and how
the survey data interact with sampling bias and imperfect detection
(Guillera-Arroita et al., 2015). Early risk models were usually devel-
oped based on presence-absence survey data (Miller, 2015). Indeed,
presence-absence survey data can estimate probability of occurrence,
which is the highest level of information content possible, but this is
only achievable when detection probability is perfect (Guillera-Arroita
et al., 2015). Detection probability for depredation events by Mexican
wolves is low and it varies primarily by producer (Breck et al., 2011).
Our goal was to produce a map of the study area that correctly ranks
locations for risk of depredation on cattle by Mexican wolves. Such
ranking models have high information content and good ability to
discriminate between depredation and non-depredation sites and these
models may be created using either presence-absence or presence-
background datasets (Guillera-Arroita et al., 2015). We did not have
data on locations where Mexican wolves and livestock overlapped but
depredation had not occurred, and therefore did not have absence data.
Consequently, we used presence-background data in Maxent to model
depredation risk. In addition to be being consistent with our modeling
objectives, this approach also reduced the risk of including false ab-
sence data in the model.

Maxent is a machine-learning program that uses the principle of
maximum entropy to estimate the distribution of a species (or occur-
rences such as depredation events) based on occurrence points (Phillips
et al., 2006; Elith et al., 2011). Maxent typically has better performance
in comparison with other presence-background methods, it performs
well with small samples, and it is robust to spatial errors and biased
sampling (Elith et al., 2006, 2011). In addition, Maxent can use both
categorical and continuous data and it can incorporate interactions
between variables (Phillips and Dudik, 2008). However, Maxent has
been criticized because many users have failed to understand and ad-
dress model assumptions, control model complexity, and report re-
levant results (Yackulic et al., 2013; Morales et al., 2017). Maxent only
performs well if its assumptions are met and its settings are tuned (i.e.,
to find and use optimal model parameters; Merow et al., 2013; Morales
et al., 2017). Thus, we incorporated all currently recommended mod-
eling criteria for our Maxent analyses, including correcting sampling
bias, defining background extent based on study goals and assumptions,
testing model complexity, and avoiding overestimation in model eva-
luation (Merow et al., 2013; Radosavljevic and Anderson, 2014).

2.4.1. Sampling bias

A key assumption of species distribution models generated via
Mazxent is that all locations on the landscape have equal chance to be
sampled (Royle et al., 2012). Sampling bias can result in overfitting the
model toward areas with clustered points and, thus, inaccurate models
(Phillips et al., 2009). To reduce the effect of sampling bias on the
depredation risk model, we used spatial filtering to randomly decrease
the number of presence points in oversampled regions (Boria et al.,
2014; Radosavljevic and Anderson, 2014), and removed all but one
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depredation record within each 1 km pixel. In this way, we could retain
85% of depredation points in the model.

2.4.2. Background extent

Maxent compares conditions at the locations of the dependent
variable to randomly selected locations within a background area. The
extent of the area in which background points are selected should be
determined according to the objectives of the study and characteristics
of the environmental conditions that are desired to be discriminated
from presence points (Merow et al., 2013). To define the background
extent, we created a buffer around each depredation point using the
mean home range size for Mexican wolves (17.6 km radius, USFWS,
2017). We chose this buffer based on a tradeoff between needing
background points that represent a range of variation, while restricting
the background extent to only areas where wolves occur.

2.4.3. Model complexity

Maxent is capable of fitting highly complex models. However, less
complicated models are more interpretable and less sensitive to sam-
pling bias (Yackulic et al., 2013). We addressed three sources of model
complexity, multicollinearity,  multiplier, number and type of fea-
tures, by applying sample size corrected Akaike Information Criteria
(AIC.; Akaike, 1974; Burnham and Anderson, 2007) in a stepwise
fashion. First, we used the R package MaxentVariableSelection
(Jueterbock, 2015) to obtain a set of models. Each model included
variables that were not highly correlated (r < 0.7) and that had a model
contribution > 5% individually. We repeated the process of variable
selection for a range of 3 multipliers from O to 15 at an increment of
0.5. The B multiplier is a penalty coefficient to reduce overfitting
(Tibshirani, 2011). MaxentVariableSelection is able to consider multi-
collinearity, model contribution and 3 multiplier, but it is not able to
include specified feature sets. Thus, we considered the variables of the
model with lowest AIC. as the input for the next step. Next we used the
R package ENMeval (Muscarella et al., 2014) to find the optimum set of
features from an a priori set of features and retuned the 3 multiplier for
the variables selected by MaxentVariableSelection. Maxent calculates
five models for each independent variable known as features: linear (L),
quadratic (Q), product (P), threshold (T) and hinge (H). We tested 9 sets
of feature classes: L, H, LQ, LQT, LP, HP, LQP, LQTP. We considered L
because one side of the unimodal curve might not be included in the
background data (Elith et al., 2010). We examined H since avoiding T
may improve the model performance and lead to a simpler and
smoother model (Phillips et al., 2017). We considered LQ because re-
sponses of species to environmental variables are mostly nonlinear and
unimodal, as observed in fundamental niches (Austin, 2007). We in-
cluded LQT since some environmental conditions may limit species
distribution (e.g. highly rugged areas). We added P to L, H, LQ, LQT
feature sets since it may negligibly improve model performance, al-
though it makes model interpretation difficult (Phillips et al., 2017).

2.4.4. Model evaluation

We did not use Maxent's default model evaluation, random parti-
tioning k-fold cross-validation, because it leads to overestimation of
performance (Boria et al., 2014). Instead, we evaluated the accuracy of
model predictions by applying spatially independent k-fold cross-vali-
dation with R package ENMeval using the ‘block’ method (Muscarella
et al., 2014). The block method was chosen because our aim was pro-
jecting models developed for a small region (i.e., depredation in-
cidences where Mexican wolves currently occur) to the entire study
area (i.e., areas where depredations by Mexican wolves could even-
tually occur; Wenger and Olden, 2012). The block method partitioned
our presence points and background points into four bins of equal
numbers based on latitude and longitude lines.

We assessed the accuracy of predictions of models via threshold-
independent and threshold-dependent omission rates. For the
threshold-independent evaluation methods we used Area Under the
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Curve of the Receiver Operating Characteristic plot (AUC) to evaluate
the overall model performance (Phillips et al., 2006). We also measured
overfitting by calculating AUC difference, which is the difference be-
tween AUC calculated on training localities and AUC calculated on
evaluation localities (Warren and Seifert, 2011). Threshold-dependent
omission rates quantify discriminatory ability and overfitting of models.
These rates are based on two threshold criteria: 10% omission rate of
the training records and lowest presence threshold. The former is a
value that excludes the 10% of localities with the lowest predicted
values and its expected omission rate is 0.10. The latter is the minimum
predicted value for any pixels, including training points, with an ex-
pected value of zero for test presence points. Generally, models with
lower omission exhibit better discrimination between suitable and un-
suitable areas, while models with higher omission rates indicate over-
fitting (Anderson and Gonzalez, 2011). For both threshold-independent
and threshold-dependent measures, we used the averaged values across
the four geographic bins. Maxent models assume that species are at
equilibrium with the environmental variables used to fit the model.
Extrapolation outside the range of variation represented by the en-
vironmental variables can lead to errors. Thus, we ran a Multivariate
Environmental Similarity Surface analysis (MESS, Elith et al., 2010)
using package Dismo (Hijmans et al., 2017) to find where our model is
violating this assumption. MESS analysis quantifies the degree of si-
milarity between the range of variables at occurrence locations and
projection data set. Predictions outside of the similar domain may not
be reliable (Elith et al., 2010).

3. Results

The model with the lowest AIC. used a B multiplier = 3.5; linear,
quadratic and product features, and it had 6 uncorrelated variables with
a contribution > 5% including canopy cover variation, elk abundance,
land cover, slope, density of roads and density of developed areas
(Tables 1 and 2). The most important variables in discriminating high
depredation risk from low depredation risk areas were canopy cover
variation and relative abundance of elk (33.1% and 29.3% contribu-
tion, respectively), both of which had a positive linear relationship with
depredation risk (Fig. 1). Land cover majority type had 13% contribu-
tion to the model, with montane grassland having the highest prob-
ability of depredation (90% probability), and pine woodland having the
lowest probability of depredation (60% probability). There also
was > 65% chance of depredation in areas with a land cover majority
of mixed conifer forest, basin/playa, chaparral, desert/semi desert
scrub, disturbed, pinyon-juniper woodland, riparian, rock and savanna
grassland. In contrast, depredation risk was negatively related to slope,
density of roads and density of developed areas (9.4%, 9.4% and 5.5%
contribution, respectively; Fig. 1).

The mean AUC of the model was 0.81 indicating that the model had
good overall performance (Aratijo et al., 2005) in distinguishing areas
with high depredation risk from areas with low depredation risk
(Table 1). The AUC difference was low (0.05) suggesting that the model

Table 1
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Table 2
Percent contribution of variables in the risk model for cattle depredation by the
Mexican wolf (Canis lupus baileyi).

Variables Percent of contribution
Canopy cover variation 33.1

Elk (Cervus canadensis) abundance 29.3

Land cover 13.7

Slope 9.5

Density of roads 9.5

Density of developed areas 5.5

was not affected by overfitting toward depredation points and, thus,
had a good transferability in space (Warren and Seifert, 2011).
Threshold-dependent measures indicated that the model had low
overfitting and high discriminatory ability at 10% omission rate (0.15)
and lowest presence threshold (0.006).

The risk map revealed that most of the depredation hotspots are
located within public lands managed by the U.S. Forest Service (Fig. 2).
Within the MWEPA (i.e., south of I-40), the highest depredation risk
hotspots were in portions of the Mogollon Highlands (i.e., vicinity of
the former BRWRA). A large area with moderate risk was on the Mo-
gollon Plateau near Flagstaff, Arizona. Other smaller hotspots of low to
moderate risk are in the Zuni Mountains, Magdalena Mountains, San
Mateo Mountains, Manzano Mountains, and parts of the Sacramento
Mountains in New Mexico, and the Nantanes Pleateau and Pinaleno
Mountains in Arizona (Fig. 2). According to the MESS analysis, areas
near large cities (except Flagstaff) had values for variables most outside
the range of the depredation points, and hence these areas do not
predict well. Based on an examination of individual variable con-
tributions to the MESS analysis, the poor prediction of these areas was a
product of all of the variables except slope (see Appendix S5 in Sup-
porting information).

4. Discussion
4.1. Depredation by Mexican wolves

We found that the primary factors associated with increased risk of
depredation by Mexican wolves on livestock were higher canopy cover
variation and higher relative abundance of elk. The positive relation-
ship between risk of livestock depredation and abundance of elk is
consistent with other studies that also found a positive correlation be-
tween the abundance of natural prey and depredation risk (Bjorge and
Gunson, 1985; Bradley and Pletscher, 2005; Karanth et al., 2013; Stahl
et al., 2002; Treves et al., 2004). Elk are the primary prey for Mexican
wolves within their currently occupied range in Arizona and New
Mexico (Carrera et al., 2008; Reed et al., 2006). Abundance of natural
prey is considered a key factor that determines distribution and
movement patterns of wolves (Fuller et al., 2010). A number of studies
have concluded that depredation on livestock ensues when wolves

Settings and evaluation metrics for a spatial risk model of cattle depredation by Mexican wolf (Canis lupus baileyi).

Features” B’ Full AUC® Mean AUC? Mean AUC Difference®

Mean omission rate’

Mean minimum omission rate® Number of parameters”

LQP 3.5 0.88 0.81 0.05

0.15 0.006 11

@ L = linear, Q = quadratic, P = product.
b B = B multiplier.

¢ AUC (Area Under the Curve of the Receiver Operating Characteristic plot) based on unpartitioned dataset.

4 AUC based on the testing data averaged across four bins.

¢ Difference between the training AUC (calculated on training localities) and testing AUC (calculated on evaluation localities).
f The 10% omission rate of the training records (a value that excludes the 10% of localities with the lowest predicted values).

& The lowest presence threshold (the minimum predicted value for any pixels).
" The number of parameters in the full model.

330



R. Goljani Amirkhiz et al.

Biological Conservation 224 (2018) 327-335

0gf
ort
08t 1
06}
07t E
05t g
06 |
04t
05
04t 1 o3t
03f 0.2} E
02t 1 ok _
'M L 1 L L L L L L L L 1 1 L 1 L 1 1 1 I 1 1 1 1 1 1 1
8 9 10 11 12 13 14 15 16 17 18 19 20 210 22 00 01 02 03 04 05 06 07 08 08 10
= . . ao?
4 Canopy Cover Variation Relative Elk Abundance
>
o p—
—
el — : . - - - - - - - . - . —
o 090 08
g 088 azk 1
= 086 .
= 084l
< 06l |
g 082f .
L _ o5k j
g 0.80
o 078}
(-0‘_—: 076 J 04 4
o 074 1
B ok 03t .
= 2
< 0.70 5L 1
.8 0.2
068t
»
O 066 04k S S S S N [ S S S S S —
2 3 5 6 7 8 9 11 12 13 14 15 18 19 20 0 5 10 15 20 25 30 35 40 45 50 55 60
‘8 Lo
Land Cover Majority Slope
>
=
=1
—
2
<
O
o v - v . v - - - -
» 075 4
A~ N 065
070t g
065+ g 050
060} g -
055
050
050 g
045t . 045
040t _
040t
035 g
030 & i 1 i I 1 1 1 = . - . . + - t -
0.00 0.05 0.10 0.5 0.20 0.25 0.30 e ¢ * s 8 10 12 14
Density of Roads Density of Developed Areas

Fig. 1. Response curves of the Maxent model for Mexican wolf (Canis lupus baileyi) depredation on cattle. For description of variables see Table S2.1. *Land cover
majority types: 3, mixed conifer forest; 5, basin/playa; 6, chaparral; 7, desert/semidesert; scrub, 8, arroyo; 9, disturbed; 11, montane grassland; 12, oak woodland;
13, open water; 14, pine woodland; 15, pinyon-juniper woodland; 18, riparian wetland; 19, rock; 20, savanna/semidesert grassland.

pursue their natural prey and unexpectedly confront livestock and shift
their pursuit to livestock as an easier prey (Bjorge and Gunson, 1985;
Bradley and Pletscher, 2005; Oakleaf et al., 2006; Oakleaf et al., 2003).

Elk, like many other prey species, alter their profitable habitat (open
grasslands) in response to predation risk (Mao et al., 2005). Wolves are
pursuit predators that prefer to hunt in flat, open areas (Davie et al.,
2014; Treves et al.,, 2011). Consequently, dense forests may be per-
ceived as less dangerous to elk than open grasslands (Mao et al., 2005).
In the Greater Yellowstone Ecosystem, Creel et al. (2005) reported that
elk used open grasslands in the absence of wolves, but that elk moved
into forest and more steep terrain when wolves were present. Similarly,

we found higher depredation risk in areas with open land cover
(montane grassland) and flatter slopes, and lower depredation risk in
forested areas with steeper slopes. Cattle also tend to prefer open
grassland and flatter slopes (Bailey et al., 2001; Bailey, 2005). There-
fore, it is possible that cattle become more vulnerable to depredation by
Mexican wolves when elk vacate open grassland and move into forests
or rugged terrain. These relationships also provide an explanation for
the positive relationship between canopy cover variation and depre-
dation risk. Areas with higher canopy cover variation might provide
ideal conditions for elk, due to comingling of high quality (but high
risk) foraging habitats with poor quality (but safer) foraging habitats,
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Fig. 2. Map of predicted depredation on cattle by the Mexican wolf (Canis lupus baileyi) in Arizona and New Mexico, USA. Lines are major highways and stars are
major cities. Depredation risk is highest in areas in red and is lowest in areas in dark blue. Depredation incidences (black dots) are filtered at 1km scale. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

resulting in less opportunity for predation on elk by wolves (Mao et al.,
2005). This could result in increased risk of livestock depredation. Al-
though the abundance of natural prey and land cover have been re-
cognized as influencing factors associated with depredation risk by
wolves in the Southwestern U.S. (our study), Northern Rockies (Bradley
and Pletscher, 2005) and Midwest (Treves et al., 2004), the differences
in natural prey seasonal movements and livestock husbandry practices
may influence this relationship. For instance, in the Northern Rockies
depredations are seasonal in relation to how livestock are managed and
migration of ungulates (Bradley and Pletscher, 2005; Nelson et al.,
2012). In the Midwest, white-tailed deer is the primary prey and live-
stock are mostly kept in confined pastures on private lands (Treves
et al., 2004). In the Southwestern U.S., livestock grazing is mostly year-
round on public lands and depredations occur year-round, with an in-
crease in the denning season (USFWS, 2015). In our study, annual li-
vestock density was not an important variable in the best depredation
risk model (its contribution to the model was 2%). Other studies on
wolf (Behdarvand et al., 2014), cougar (Teichman et al., 2013), and
lynx (Linnell et al., 1999; Mao et al., 2005), also reported no relation-
ship between the density of livestock and depredation events. However,
some other studies have demonstrated that livestock density is an im-
portant factor influencing depredation in areas with different livestock
husbandry systems (Miller, 2015). It is possible that livestock density
was underrepresented in our model due to the coarse scale and absence
of data on seasonal abundance of livestock. Future studies that include
variables such as herd size, type of operation, and seasonal grazing
patterns may reveal more information about the relationship between
livestock density and depredation risk in the Southwestern U.S. We
found that depredation risk was higher in areas remote from human
development and with lower road density. Similar results were found
by Treves et al. (2004) and Davie et al. (2014). These patterns are likely
related to wolf habitat selection. Higher road and human densities can
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decrease habitat suitability for wolves and, therefore, wolves establish
territories in areas with lower road and human densities (Mech et al.,
1988; Oakleaf et al., 2006; Wydeven et al., 2001).

The risk map revealed the spatial configuration of depredation
hotspots. Depredation hotspots are mostly located within montane
areas that are public lands in National Forests. Because these montane
areas have similar environmental conditions compared with those
surrounding the depredation locations, the model makes robust pre-
dictions about depredation risk in most of these areas. Further, many of
these montane areas are also considered areas most suitable for
Mexican wolves by virtue of their forest cover, high native ungulate
density, low livestock density, and low road and human densities
(USFWS, 2017). Consequently, our risk map can help inform future
expansion of the distribution of Mexican wolves in Arizona and New
Mexico in order to minimize potential future conflicts. Moreover, this
map can be used to prioritize areas for depredation risk mitigation in-
cluding the implementation of active non-lethal methods in depreda-
tion hotspots. Our results indicate that spatial overlap of livestock in
areas with abundant elk was associated with the risk of depredation.
Thus, spatiotemporal management of livestock grazing to reduce this
overlap could decrease the risk of depredation. For instance, depreda-
tions might be reduced by releasing livestock into pastures within
hotspot areas after elk calving has occurred and elk become more dis-
persed. Other strategies for reducing depredation risk include limiting
the exposure of young livestock to open range situations where they
may be more prone to being attacked by wolves (Oakleaf et al., 2003),
increasing human presence while simultaneously using non-lethal tools
in an adaptive and proactive fashion (Stone et al., 2017) and preventing
Mexican wolves from denning around areas of higher depredation risk
(USFWS, 2003).

Spatial risk models demonstrate the interactions between predators
and livestock in a dynamic system (Miller, 2015). Therefore, with the
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expansion of Mexican wolves' distribution, the depredation risk map
should be updated by adding new data and the results of management
feedback. Mexican wolves may adjust their hunting patterns in response
to alteration in patterns of natural prey and livestock distribution and
density. In areas where deer are the primary prey, the relationship
between depredation risk, natural prey abundance and livestock may
change. Landscape variables are only part of the picture. Complimen-
tary studies on the effect of individual and population level aspects
(e.g., breed, size, and age of livestock; management of livestock; wolf
pack makeup) on depredation risk will be required with an expansion of
Mexican wolf distribution.

There are several caveats or limitations to our study. First, our de-
predation risk model was developed at a 1km resolution landscape
scale based on GIS layers. Therefore, the model does not consider other
factors at the individual or population level that can contribute to de-
predation risk, such as breed, sex, age, or management of livestock (De
Azevedo and Murray, 2007; Ogada et al., 2003; Teichman et al., 2013)
or demographics of wolves (Marucco and Mclntire, 2010). Second, our
risk map assumes Mexican wolves are present throughout the entire
study area. Obviously, there is no risk of depredation by wolves where
they are not actually present. Third, the depredation risk model was
built based on environmental conditions around depredation locations
that occurred from 1998 to 2017, which were primarily within the
former BRWRA. Thus, the accuracy of the model's predictions outside of
this range depends on the degree of similarity of the environmental
variables within and outside of this range. The MESS analysis demon-
strated that the model predicts well in all areas of the study area except
around some (but not all) major cities, where wolves are unlikely to
occur. Finally, the relative abundance of mule deer and white-tailed
deer were not important predictors in our model, probably because elk
are the primary prey species in vicinity of the former BRWRA. However,
deer are the primary prey for Mexican wolves where elk are absent
(Bednarz, 1988; Brown and Shaw, 2002). Therefore, we urge caution in
interpreting the model in areas, such as the Sky Island region of
southeastern Arizona, where elk are generally absent and deer would
provide the primary natural prey for wolves.

4.2. Recommendations for risk modeling

We developed the risk model for Mexican wolf depredation on li-
vestock by 1) selecting variables based on a full spectrum of specific
well-rationalized biological hypothesis related to factors that may in-
fluence depredation risk, 2) creating important variables that were not
otherwise available (e.g., livestock density and prey abundance), 3)
developing Maxent models by adhering to all current recommendations
for reducing biases and overfitting, and 4) using multiple model eva-
luation metrics. Our approach can serve as a model for other future
depredation risk modeling studies.

1. When developing a depredation risk model, it is important to in-
clude a predictor variable related to livestock abundance. Our re-
sults did not support our assumption that depredation risk was re-
lated to livestock abundance. However, because we tested this
relationship using fine scale data on livestock abundance, it provides
stronger support for our key findings that wolf depredation was
primarily associated with abundance of natural prey rather than
livestock. This suggests that management to reduce depredation
could preferentially focus on areas with high natural prey abun-
dance, rather than areas with high livestock abundance. Detailed
data on livestock abundance are generally not available. This pro-
blem may be more challenging for large regional study areas, for
areas with free range livestock grazing (such as public lands allot-
ment grazing management in western U.S.), or where there is a
mosaic of various land ownership, in comparison with areas where
livestock are raised on small farms or in small fenced pastures. Our
model of annual livestock density is the first model to rigorously
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predict livestock abundance at a large regional scale. We demon-
strated that AUM stocking rates can be predicted by environmental
variables. Stocking rate data, such as AUM, are available in many
areas under managed livestock grazing. Modeling stocking rate
using appropriate methods and predictors can fill the gap of live-
stock abundance data in human-wildlife conflict studies.

. Abundance of natural prey is perhaps the most important variable to
incorporate in depredation risk modeling (Miller, 2015). In our
study, relative abundance of elk was a primary predictor of depre-
dation risk. However, actual data on abundance of natural prey are
rarely available, except in small study areas where field studies have
occurred. Estimates of abundance of natural prey over large study
areas, such as those based on game management units, may be too
crude or have too much uncertainty to fulfill study goals (Pearce and
Boyce, 2006). Maxent's raw output can be interpreted as an estimate
of relative abundance (Phillips et al., 2017). Therefore, species
distribution models created with Maxent can serve as a surrogate for
prey abundance in the absence of detailed field data. However, the
performance of Maxent depends on the quality of dependent and
independent variables and proper configuration of its settings
(Merow et al., 2013). An advantage of using Maxent is that the
dependent variable (species occurrence data) is usually already
available from a variety of sources (e.g., Global Biodiversity In-
formation Facility). However, these data have their own constraints,
especially spatial bias, which must be addressed to obtain accurate
results (Beck et al., 2014). Our study showed that Maxent's raw
output can fill the gap of natural prey abundance in human-wildlife
conflict studies. More research is needed to understand the re-
lationships between Maxent output and actual animal abundances.
Also, future studies should use independent data to validate our
models.

. In this study, we incorporated all current recommendations for
improving Maxent performance including correcting sampling bias,
defining background extent, evaluating model complexity (reducing
multicollinearity, tuning beta parameter, tuning feature classes),
and performing unbiased model evaluation (Merow et al., 2013;
Radosavljevic and Anderson, 2014). Few studies of any kind (in-
cluding to our knowledge no spatial risk modeling studies) have
implemented all recommendations for producing unbiased and ro-
bust Maxent models (Morales et al., 2017). Using Maxent's default
settings can lead to overly complex models that reveal odd re-
lationships between variables and depredation risk as a result of
overfitting, and consequently potentially lead to incorrect conclu-
sions (Radosavljevic and Anderson, 2014).

. Based on our prey model results, we suggest that when developing
species distribution models over large areas it is important to test
performance of models generated based on different background
extents and scales of rarification. In addition, our results support
conclusions of others that Maxent models be evaluated using mul-
tiple metrics including expert evaluation (Muscarella et al., 2014;
Radosavljevic and Anderson, 2014).

5. Conclusions

Negative human-wildlife interactions can reduce the perceived
value of a species (Conover, 2001). Therefore, employing creative and
less costly approaches such as spatial risk models can help to reverse
this process (Treves et al., 2011). We showed that spatial risk models
can be created using available data. However, the quality of predictions
depends on the quality of predictor variables and the modeling ap-
proach. Our approach to create natural prey and livestock abundance
variables can facilitate the process of spatial risk modeling when lim-
itations in availability of prey abundance data are a challenge, espe-
cially in large-scale studies.
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